INVESTIGATIONS

MILES OF TILES

1. Draw the next two patterns
2. Can you tell the how many black and white tiles will the fifth pattern have?
3. What about the $10^{\text {th }}$ pattern. How many black and white tiles does it have?
4. Can you make a general rule for any pattern to find the number of black and white tiles in it?

Pattern Number	Number of Tiles Across	Number of Black Tiles	Number of White Tiles	Total Number of Tiles
$\mathbf{1}$	3	4	1	5
2	5	9	4	13
3				
4				
5				
-				
-				
\mathbf{n}				
-				

MARKING SCHEME

1. 3^{RD} pattern
2. $4^{\text {th }}$ pattern
3. Predicting the $5^{\text {th }}$ pattern correctly
4. Predicting the $10^{\text {th }}$ pattern correctly
5. Predicting the $\mathrm{n}^{\text {th }}$ pattern

20 marks
30 marks
10 marks
20 marks
20 marks
100

