Summary: Rules on indices

$\sqrt{\frac{16}{4}}=\sqrt{4}=2$
Also, $\sqrt{\frac{16}{4}}=\frac{\sqrt{16}}{\sqrt{4}}=\frac{4}{2}=2$

Both methods above are equivalent and you use whichever methods you find it easy.
So, generally,
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ or $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$ use whichever method is easy.

More Facts on indces:
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$

$$
a^{\frac{m}{n}}=\sqrt[n]{a}^{m} \text { or } a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
$$

Can you see why the first method is easier even though they give the same anser

$$
a^{m}{ }^{n}=a^{m n}
$$

$$
a^{\frac{1}{2}}=\sqrt{a}
$$

Example,
$8^{\frac{2}{3}}=\sqrt[3]{8}^{2}=2^{2}=4$ or $8^{\frac{2}{3}}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4$
Which of the two methods is easier and why?

Challenge: Can you show why $a^{\frac{1}{2}}=\sqrt{a} \quad$ or $\quad a^{0}=1$

