Flame Temperature

Facts:	Fuel/oxidant mixture	Maximum Temperature		
		К		
	Propane – air	2200		
	Hydrogen – air	2320		
	Acetylene – air	3430		
	Cyanogen – air	4900		

Use spreadsheet to solve the following cubic equation.

 $22.9 \times 10^{-7} T^3 - 23.14 \times 10^{-3} T^2 - 165.3T + 987100 = 0$

T is the maximum theoretical temperature achievable during the combustion of C_2H_2 (acetylene) and N_2O (nitrous oxide). The high temperature is required in order to dissociate the injected material into atoms to observe the characteristic atomic emissions – flame emission spectrophotometry (flame test).

Solution: T = 4400 (2 s.f). This is theoretical maximum and in practice one gets a lower value than this, about 3230K due to technical reasons but still high enough to warrant using the above mix for high temperature applications.

guess				
2000	2000			
	5522.444			
	4035.526			
	4602.263			
	4356.953			
	4459.977			
	4416.036			
	4434.665			
	4426.747			
	4430.109			
	4428.681			
	4429.287			
	4429.03			
	4429.139			
	4429.092			
	4429.112			
	4429.104			
	4429.107			
	4429.106			
	4429.107			
	4429.106			
	4429.106			

Change the guess value in red to investigate the speed of convergence iteratively.