The $\mathrm{n}^{\text {th }}$ term Formula of the Triangular Sequence

Since the $2^{\text {nd }}$ difference is constant the expression of the $\mathrm{n}^{\text {th }}$ term must be quadratic.
So, expect

$$
\begin{equation*}
\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c} \quad \text { generally }, \tag{1}
\end{equation*}
$$

Now, $1^{\text {st }}$ term:

$$
\begin{equation*}
a+b+c=1 \tag{2}
\end{equation*}
$$

$2^{\text {nd }}$ term $\quad 4 a+2 b+c=3$
Subtract equation (2) from equation (3) to get:

$$
\begin{equation*}
3 a+b=2 \tag{4}
\end{equation*}
$$

$3^{\text {rd }}$ term: $\quad 9 a+3 b+c=6$
Subtract equation (2) from equation (5) to get:

$$
\begin{equation*}
8 a+2 b=5 \tag{6}
\end{equation*}
$$

Now, solve equations (4) and (6) simultaneously:

$$
\begin{aligned}
& 3 a+b=2 \\
& 8 a+2 b=5
\end{aligned}
$$

Or

$$
\begin{array}{r|r}
6 a+2 b=4 & \text { Why? } \\
8 a+2 b=5 &
\end{array}
$$

So,
and

$$
\begin{aligned}
2 \mathrm{a}=1 & \text { Why? } \\
\mathrm{a}=\frac{1}{2} & \text { Why? }
\end{aligned}
$$

Now, substitute this value of a in equation (4)

$$
\begin{aligned}
3 \mathrm{a}+\mathrm{b} & =2 \\
3 \times \frac{1}{2}+\mathrm{b} & =2 \\
\mathrm{~b} & =\frac{1}{2} \quad \text { why? }
\end{aligned}
$$

and since

$$
a+b+c=1 \quad(\text { from } 2)
$$

Substituting these values in (1):

$$
\frac{1}{2} n^{2}+\frac{1}{2} n=\frac{1}{2} n(n+1)
$$

Now, let us check if this formula works for, say, the $4^{\text {th }}$ term: $\frac{1}{2} \times 4(4+1)=10$. Yes it does! Check if the formula works for other terms.

