Proof of Pythagoras Theorem

Triangle ABC is drawn with angle ABC = 90° . BD is drawn such that it is perpendicular to AC. As a result, $\triangle ABC \sim \triangle ADB$ (ie, $\triangle ABC$ and $\triangle ADB$ are similar triangles. Do you know why?)

Therefore,	$\frac{AB}{AD} = \frac{AC}{AB}$	why?	
So,	$AB^2 = AC.AD$	why?	(1)
Likewise,	$\Delta ABC \sim \Delta BDC$	why?	
Hence	$\frac{BC}{AC} = \frac{DC}{BC}$	why?	
So,	$BC^2 = AC.DC$	why?	(2)

Now, add equations (1) and (2) to get:

$$AB^{2} + BC^{2} = AC \cdot AD + AC \cdot DC$$

= $AC(AD + DC)$ why?
= AC^{2} why?
 $\therefore AB^{2} + BC^{2} = AC^{2}$ as required.