Proof of Pythagoras Theorem

Triangle ABC is drawn with angle $\mathrm{ABC}=90^{\circ}$. BD is drawn such that it is perpendicular to AC . As a result, $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$ (ie, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$ are similar triangles. Do you know why?)

Therefore,

$$
\frac{A B}{A D}=\frac{A C}{A B}
$$ why?

So,

$$
\begin{equation*}
A B^{2}=A C \cdot A D \tag{1}
\end{equation*}
$$

why?

Likewise,

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{BDC}
$$

why?

Hence

$$
\frac{B C}{A C}=\frac{D C}{B C}
$$

why?

So,

$$
\begin{equation*}
B C^{2}=A C \cdot D C \tag{2}
\end{equation*}
$$

why?
Now, add equations (1) and (2) to get:

$$
\begin{array}{rlrl}
A B^{2}+B C^{2} & =A C \cdot A D+A C \cdot D C & \\
& =A C(A D+D C) & & \text { why? } \\
& =A C^{2} & & \text { why? } \\
\therefore A B^{2}+B C^{2} & =A C^{2} & & \text { as required. }
\end{array}
$$

