Appropriate Level of Accuracy

Appropriate level of accuracy is when the upper and lower bounds of a particular calculation agree to a number of significant figures.

The following measurements were recorded from a pendulum experiment (simulated).
$\mathrm{L}=1.49 \mathrm{~m}$ (3 s.f)
$\mathrm{T}=2.449 s \quad(4 \mathrm{s.f})$
$\pi=$ as found in calculators
The basic relationship is:

$$
\begin{aligned}
\mathrm{T}=2 \pi \sqrt{\frac{L}{g}} \quad \text { Where, } \mathrm{L}= & \text { the length of pendulum } \\
\mathrm{T}= & \text { time period of one } \\
& \text { complete swing } \\
g= & \text { acceleration due to gravity }
\end{aligned}
$$

So, making g the subject gives:

$$
g=\frac{4 \pi^{2} \mathrm{~L}}{T^{2}}
$$

Now, the upper bound of $\mathrm{T}=2.4495 s$
the upper bound of $\mathrm{L}=1.495 \mathrm{~m}$
the lower bound of $\mathrm{T}=2.4485 s$ the lower bound of $L=1.485 m$

So, upper bound of $g=\frac{4 \pi^{2} \times 1.495}{2.4485^{2}}=9.8447 \mathrm{~ms}^{-2}$

$$
\text { lower bound of } \mathrm{g}=\frac{4 \pi^{2} \times 1.485}{2.4495^{2}}=9.7708 \mathrm{~ms}^{-2}
$$

Now, what is the appropriate level or degree of accuracy?

