Proof of the Mortgage Formula

In the mortgage calculations a series sum formula similar to the one below was used without proving it.

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{(1+x)^{k}}=\frac{1}{(1+x)}+\frac{1}{(1+x)^{2}}+\frac{1}{(1+x)^{3}}+\ldots+\frac{1}{(1+x)^{n}}=\frac{1}{x}\left[1-\frac{1}{(1+x)^{n}}\right] \tag{1}
\end{equation*}
$$

To prove the above relationship the geometric series sum formula needs to be proved first. The geometric series sum formula will then be utilised.

Let S_{n} be the sum of n terms of the geometric series below:

$$
\begin{align*}
S_{n} & =a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1} \tag{2}\\
r S_{n} & =a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}+a r^{n} \tag{3}
\end{align*}
$$

Equation 3 is r times equation 2 .
Now, subtract equation 3 from equation 2 to get
$S_{n}(1-r)=a\left(1-r^{n}\right)$
Or, $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
Note that a is the first term of the series and r is the common ratio (the result of division of two consecutive numbers of the geometric series in equation 2 and 3 above).

Now, the first term of the geometric series in equation 1 is $\frac{1}{1+x}$ and the common ratio is $\frac{1}{1+x}$
So, substituting for the first term and the common ratio in equation 4 will give:
$S_{n}=\frac{\frac{1}{1+x}\left[1-\frac{1}{(1+x)^{n}}\right]}{1-\frac{1}{1+x}}=\frac{1}{x}\left[1-\frac{1}{(1+x)^{n}}\right] \quad$ why?
Finally, since x is a working variable one can replace r for x. That completes the proof.

