Compound Interest Formula

Show that the formula for calculating compound interest is give by:

$$A_n = P(1+r)^n$$

Where A_n is the amount at the end of n^{th} year

P is the principal (the initial investment)

r is the interest rate expressed as decimal (i.e., $r = \frac{R}{100}$)

R is the nominal interest rate

n is the number of investment years

Let A_1 be the amount at the end of 1^{st} year.

The interest at the end of the 1^{st} year is Pr

So the amount at the end of the 1st year is:

$$A_1 = P + Pr$$
 (initial investment and interest earned)

Or
$$= P(1+r)$$

At the beginning of the 2^{nd} year A_1 will be invested to earn interest at the same rate r.

So at the end of the 2^{nd} year the interest earned is $A_1 r$ and the total amount is:

 $A_2 = A_1 + A_1 r$ (capital at the end of the first year and interest earned

Or
$$= A_1(1+r)$$
 why?

Or
$$= P(1+r)(1+r)$$
 why?

Or
$$A_2 = P(1+r)^2$$
 why?

So, $A_n = P(1+r)^n$ as require, why?