Compound Interest Formula

Show that the formula for calculating compound interest is give by:

$$
A_{n}=P(1+r)^{n}
$$

Where A_{n} is the amount at the end of $\mathrm{n}^{\text {th }}$ year P is the principal (the initial investment) r is the interest rate expressed as decimal (i.e., $r=\frac{R}{100}$)
R is the nominal interest rate
n is the number of investment years
Let A_{1} be the amount at the end of $1^{\text {st }}$ year.
The interest at the end of the $1^{\text {st }}$ year is $P r$
So the amount at the end of the $1^{\text {st }}$ year is:

Or $\quad=P(1+r)$
At the beginning of the $2^{\text {nd }}$ year A_{1} will be invested to earn interest at the same rate r.

So at the end of the $2^{\text {nd }}$ year the interest earned is $A_{1} r$ and the total amount is:

$$
\begin{gathered}
A_{2}=A_{1}+A_{1} r \text { (capital at the end of the first year and interest earned } \\
\text { at the end the } 2^{\text {nd }} \text { year) }
\end{gathered}
$$

Or $\quad=A_{1}(1+r) \quad$ why?
Or $\quad=P(1+r)(1+r) \quad$ why?
Or $\quad A_{2}=P(1+r)^{2} \quad$ why?

So, $\quad A_{n}=P(1+r)^{n}$ as require, why?

